[1] M.A. Akbar, N.H.M. Ali and J. Hussain, Optical soliton solutions to the (2 + 1)- dimensional Chaffee infante equation and the dimensionless form of the Zakharov equation, Adv. Difference Equ. 2019 (2019), no. 1, 446.
[2] E.C. Aslan and M. Inc, Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis, Optik 196 (2019), 162661.
[3] E. Atilgan, M. Senol, A. Kurt and O. Tasbozan, New wave solutions of time-fractional coupled BoussinesqWhitham Broer-Kaup equation as a model of water waves, China Ocean Eng. 33 (2019), 477–483.
[4] A. Bekir, Application of the (G′ G)-expansion method for nonlinear evolution equations, Phys. Lett. A 372 (2008), no. 19, 3400–3406.
[5] A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis, Optik 171 (2018), 217–220.
[6] A. Biswas, M. Ekici, A. Sonmezoglu, Q. Zhou, S.P. Moshokoa and M. Belic, Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by extended trial function scheme, Optik 160 (2018), 17–23.
[7] A. Biswas, Y. Yildirim, E. Yasar, H. Triki, A.S. Alshomrani, M.Z. Ullah, Q. Zhou, S.P. Moshokoa and M. Belic, Optical soliton perturbation with full nonlinearity for Kundu-Eckhaus equation by modified simple equation method, Optik 157 (2018), 1376–1380.
[8] Y. C¸ enesiz, O. Tasbozan and A. Kurt, Functional variable method for conformable fractional modified KdV-ZK equation and Maccari system, Tbilisi Math J. 10 (2017), 117–125.
[9] H. Durur, A. Yokus, and K.A. Abro. Computational and traveling wave analysis of Tzitz´eica and DoddBulloughMikhailov equations: an exact and analytical study, Nonlinear Engin. 10 (2021), no. 1, 272–281.
[10] H. Durur, A. Yokus and K.A. Abro, A non-linear analysis and fractionalized dynamics of Langmuir waves and ion sound as an application to acoustic waves, Int. J. Model. Simul. In Press,
https://doi.org/10.1080/02286203.2022.2064797.
[11] M. Ekici, M. Mirzazadeh, A. Sonmezoglu, M.Z. Ullah, M. Asma, Q. Zhou, S.P. Moshokoa, A. Biswas and M. Belic, Optical solitons with Schr¨odinger-Hirota equation by extended trial equation method, Optik 136 (2017), 451–461.
[12] M. Eslami, H. Rezazadeh, M. Rezazadeh and S.S. Mosavi, Exact solutions to the space-time fractional Schr¨odingerHirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation, Optic Quant. Electron. 49 (2017), 279.
[13] Z.S. Feng, The first integral method to study the Burgers-Korteweg-de Vries equation, J. Phys. A 35 (2002), no. 2, 343–349.
[14] J.V. Guzman, M.F. Mahmood, D. Milovic, E. Zerrad, A. Biswas and M. Belic, Dark and singular solitons of Kundu-Eckhaus equation for optical fibers, Optoelectron. Adv. Mater. Rapid Commun. 9 (2015), no. 11-12, 1353–1355.
[15] S.H. Han and Q.H. Park, Effect of self-steepening on optical solitons in a continuous wave background, Phys. Rev. E 83 (2011), 066601.
[16] B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Doklady Akad.Nauk Russ. Acad. Sci. 192 (1970), no. 4, 753–756.
[17] M.M. Khater, Numerical simulations of Zakharov’s (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves, Mod. Phys. Lett. B 35 (2021), no. 31, 2150480.
[18] Z. Korpinar, M. Inc, M. Bayram and M.S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, Optik 206 (2019), 163332.
[19] A. Kurt, New analytical and numerical results for fractional Bogoyavlensky-Konopelchenko equation arising in fluid dynamics, Appl. Math A J. Chin. Univ. 35 (2020), 101–12.
[20] J. Malinzi and P.A. Quaye, Exact solutions of non-linear evolution models in physics and biosciences using the hyperbolic tangent method, Math. Comput. Appl. 23 (2018), 35.
[21] D. Milovic and A. Biswas, Bright and dark solitons in optical fibers with paraboliclaw nonlinearity, Serb. J. Electr. Eng. 10 (2013), 365–370.
[22] M. Mirzazadeh and A. Biswas, Optical solitons with spatio-temporal dispersion by first integral approach and functional variable method, Optik 125 (2014), 5467–5475.
[23] M. Mirzazadeh, M. Eslami, E. Zerrad, M.F. Mahmood, A. Biswas and M. Belic, Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach, Nonlinear Dyn. 81 (2015), 1933–1949.
[24] H.U. Rehman, A.U. Awan, K.A. Abro, E.M.T. El Din, S. Jafar and A.M. Galal, A non-linear study of optical solitons for Kaup-Newell equation without four-wave mixing, J. King Saud Univer. Sci. 34 (2022), no. 5, 102056.
[25] H.U. Rehman, I. Iqbal, S. Subhi Aiadi, N. Mlaiki and S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar subequation method, Mathematics 10 (2022), no. 18, 3377.
[26] H.U. Rehman, M. Inc, M.I. Asjad, A. Habib and Q. Munir, New soliton solutions for the spacetime fractional modified third order Korteweg-de Vries equation, J. Ocean Engin. Sci. In Press
https://doi.org/10.1016/j.joes.2022.05.032.
[27] H.U. Rehman, A.R. Seadawy, M. Younis, S. Yasin and S.T.R. Raza, and S. Althobaiti, Monochromatic optical beam propagation of paraxial dynamical model in Kerr media, Results Phys. 31 (2021), 105015.
[28] H. Rezazadeh, M. Inc and D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional WazwazBenjamin-Bona-Mahony equations, Front. Phys. 8 (2020), 332.
[29] F.A. Shaikh, K. Malik, M.A.H. Talpur and K.A. Abro, Role of distinct buffers for maintaining urban-fringes and controlling urbanization: A case study through ANOVA and SPSS, Nonlinear Engin. 10 (2021), no. 1, 546–554.
[30] B. Sturdevant, D.A. Lott and A. Biswas, Topological 1-soliton solution of the generalized Radhakrishnan KunduLakshmanan equation with nonlinear dispersion, Mod. Phys. Lett. B 24 (2010), no. 16, 1825–1831.
[31] M. Tahir and A.U. Awan, Analytical solitons with Biswas-Milovic equation in presence of spatio-temporal dispersion in non-Kerr-law media, Eur. Phys. J. Plus 134 (2019), no. 9, 464.
[32] M. Tahir, A.U. Awan and K.A. Abro, Extraction of optical solitons in birefringent fibers for Biswas-Arshed equation via extended trial equation method, Nonlinear Engin. 10 (2021), no. 1, 146–158.
[33] M. Tahir, A.U. Awan and H.U. Rehman, Optical solitons to Kundu-Eckhaus equation in birefringent fibers without four-wave mixing, Optik 199 (2019), 163297.
[34] A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model. 40 (2004), 499–508.
[35] A.M. Wazwaz, The Tanh method for traveling wave solutions of nonlinear equations, Appl. Math. Comput. 154 (2004), 713–23.
[36] A.M. Wazwaz, The Tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Solitons Fractals 25 (2005), 55–63.
[37] A.M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput. 187 (2007), no. 2, 1131–1142.
[38] A.M. Wazwaz, The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl. Math. Comput. 201 (2008), 489–503.
[39] A.M. Wazwaz, The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the SawadaKotera-Ito seventh-order equation, Appl. Math. Comput. 199 (2008), 133–138.
[40] X.-L. Yang and J.-S. Tang, Explicit exact solutions for the generalized Zakharov equations with nonlinear terms of any order, Comput. Math. Appl. 57 (2009), no. 10, 1622–1629.
[41] A. Yokus, H. Durur and K.A. Abro, Role of shallow water waves generated by modified Camassa-Holm equation: A comparative analysis for traveling wave solutions, Nonlinear Engin. 10 (2021), no. 1, 385–394.