[1] S. Banach, Sur les operations dans les ensembles abstraits etleur application aux equations integrales, Fund. Math. 3 (1922), 133—181.
[2] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), no. 1, 74–95.
[3] M. Grabiec, Y.J. Cho and V. Radu, On Nonsymmetric Topological and Probabilistic Structures, Nova Science Publishers, New York, 2006.
[4] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), no. 2, 245–252.
[5] D. Gopal and C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 3, 95–107.
[6] V. Istratescu, An Introduction to Theory of Probabilistic Metric Spaces with Applications, Politehnica University of Bucharest, Bucharest, Romania, 1974.
[7] M.A. Kutbi, D. Gopal, C. Vetro and W. Sintunaravat, Further generalization of fixed point theorems in menger PM-spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 32.
[8] D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 159 (2008), no. 6, 739–744.
[9] Z. Mustafa, A new structure for generalized metric spaces–with applications to fixed point theory, PhD Thesis, University of Newcastle, Australia, 2005.
[10] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), no. 2, 289-–297.
[11] A. Roldan, J. Martinez-Moreno and C. Roldan, On interrelationships between fuzzy metric structures, Iran. J. Fuzzy Syst. 10 (2013), 133–150.
[12] A. Roldan and M.de la Sen, Some fixed point theorems in menger probabilistic metric-like spaces, Fixed Point Theory Appl. 2015 (2015), 16 pages.
[13] S. Shukla and M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 5, 81–92.
[14] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-–334.
[15] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Dover, New York, 2005.
[16] S. Sedghi, N. Shobkolaei, T. Dosenovic, and S. Radenovic, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca 68 (2018), no. 2, 451–462.
[17] G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Engin. Technol. 2 (2010), no. 7, 673—678.