Fixed point theorems in non-Archimedean G-fuzzy metric spaces with new type contractive mappings

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Basic Science, Gonbad Kavous University, Gonbad Kavous, Iran

Abstract

In this article, we extend some recently fixed point theorems in the setting of G−fuzzy metric spaces. We introduce some new concepts of contractions called γ-contractions and γ-weak contractions. We prove some fixed point theorems for mappings providing γ-contractions and γ-weak contractions. On the other hand, we consider a more general class of auxiliary functions in the contractivity condition.

Keywords

[1] S. Banach, Sur les operations dans les ensembles abstraits etleur application aux equations integrales, Fund. Math. 3 (1922), 133—181.
[2] Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), no. 1, 74–95.
[3] M. Grabiec, Y.J. Cho and V. Radu, On Nonsymmetric Topological and Probabilistic Structures, Nova Science Publishers, New York, 2006.
[4] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 125 (2002), no. 2, 245–252.
[5] D. Gopal and C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 3, 95–107.
[6] V. Istratescu, An Introduction to Theory of Probabilistic Metric Spaces with Applications, Politehnica University of Bucharest, Bucharest, Romania, 1974.
[7] M.A. Kutbi, D. Gopal, C. Vetro and W. Sintunaravat, Further generalization of fixed point theorems in menger PM-spaces, Fixed Point Theory Appl. 2015 (2015), Article ID 32.
[8] D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 159 (2008), no. 6, 739–744.
[9] Z. Mustafa, A new structure for generalized metric spaces–with applications to fixed point theory, PhD Thesis, University of Newcastle, Australia, 2005.
[10] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), no. 2, 289-–297.
[11] A. Roldan, J. Martinez-Moreno and C. Roldan, On interrelationships between fuzzy metric structures, Iran. J. Fuzzy Syst. 10 (2013), 133–150.
[12] A. Roldan and M.de la Sen, Some fixed point theorems in menger probabilistic metric-like spaces, Fixed Point Theory Appl. 2015 (2015), 16 pages.
[13] S. Shukla and M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst. 11 (2014), no. 5, 81–92.
[14] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-–334.
[15] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Dover, New York, 2005.
[16] S. Sedghi, N. Shobkolaei, T. Dosenovic, and S. Radenovic, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca 68 (2018), no. 2, 451–462.
[17] G. Sun and K. Yang, Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Engin. Technol. 2 (2010), no. 7, 673—678.
Volume 15, Issue 1
January 2024
Pages 49-60
  • Receive Date: 21 November 2021
  • Revise Date: 24 August 2022
  • Accept Date: 27 August 2022