[1] M. Asadi, E. Karapinar and P. Salimi, New extension of p-metric spaces with some fixed-points results on M-metric spaces, J. Inequal. Appl. 18 (2014), 1–9.
[2] M. Asadi, M. Azhini, E. Karapinar and H. Monfared, Simulation functions over M-metric spaces, East Asian Math. J. 33 (2017), 559–570.
[3] M. Asim, A.R. Khan and M. Imdad, Rectangular Mb-metric spaces and fixed point results, J. Math. Anal. 10 (2019), 10–18.
[4] M. Asim, K.S. Nisar, A. Morsy and M. Imdad, Extended rectangular Mr-metric spaces and fixed point results, Mathematics 7 (2019), 1136.
[5] M. Asim, I. Uddin and M. Imdad, Fixed point results in Mv-metric spaces with an application, J. Inequal. Appl. 2019 (2019), 1–19.
[6] M. Aslanta¸s, H. Sahin and D. Turkoglu, Some Caristi type fixed point theorems, J. Anal. 29 (2020), 89–103.
[7] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math. 3 (1922), 131–181.
[8] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.
[9] S.K. Chatterjee, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730.
[10] L.B. Ciri´c, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (1971), 19–26.
[11] L.B. Ciri´c, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.
[12] F.U. Din, M. Din, U. Ishtiaq, and S. Sessa, Perov fixed-point results on F-contraction mappings equipped with binary relation, Mathematics 11 (2023), no. 1, 238.
[13] R. Kannan, Some results on fixed points, Bull. Cal. Math. 60 (1968), 71–76.
[14] U. Ishtiaq, M. Asif, A. Hussain, K. Ahmad, I. Saleem, and H. Al Sulami, Extension of a unique solution in generalized neutrosophic cone metric spaces, Symmetry 15 (2022), no. 1, 94.
[15] U. Ishtiaq, N. Saleem, F. Uddin, S. Sessa, K. Ahmad, and F. di Martino, Graphical views of intuitionistic fuzzy double-controlled metric-like spaces and certain fixed-point results with application, Symmetry 14 (2022), no. 11, 2364.
[16] Z. Kadelburg and S. Radenovi´c, Notes on some recent papers concerning F-contractions in b-metric spaces, Constr. Math. Anal. 1 (2018), 108–112.
[17] S. Luambano, S. Kumar and G. Kakiko, Fixed point theorem for F-contraction mappings in partial metric spaces, Lobachevskii J. Math. 40 (2019), 183–188.
[18] G. Minak, A. Helvaci and I. Altun, Ciri´c type generalized F-contractions on complete metric spaces and fixed point results, Filomat 28 (2014), 1143–1151.
[19] H. Monfared, M. Azhini and M. Asadi, A generalized contraction principle with control function on M-metric spaces, Nonlinear Funct. Anal. Appl. 22 (2017), 395–402.
[20] W. Onsod, P. Kumam and Y. J. Cho, Fixed points of α − θ- Geraghty type and θ- Geraghty graphic type contractions, Appl. Gen. Topol. 18 (2017), 153–171.
[21] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210.
[22] H. Piri, S. Rahrovi, H. Marasi and P. Kumam, F-contraction on asymmetric metric spaces, J. Math. Comput. Sci. 17 (2017), 32–40.
[23] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121–124.
[24] H. Sahin, A new type of F-contraction and their best proximity point results with homotopy application, Acta Appl. Math. 179 (2022), 1–15.
[25] H. Sahin, I. Altun and D. Turkoglu, Two fixed point results for multivalued F contractions on M-metric spaces, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 113 (2019), 1839–1849.
[26] S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J. 2014 (2014).
[27] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), 440–458.
[28] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 1–6.
[29] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math. 23 (1972), 292–298.