[1] D. Applebaum, Levy processes and stochastic integrals in Banach spaces, Probab. Math. Stat. 27 (2007), 75—88.
[2] S. Cerrai, G. Da Prato and F. Flandoli, Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with a Holder drift component, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), 507—551.
[3] G. Da Prato and F. Flandoli, Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal. 259 (2010), 243-–267.
[4] G. Da Prato, F. Flandoli, E. Priola and M. Rockner, Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Probab. 41 (2013), 3306–3344.
[5] G. Da Prato, F. Flandoli, E. Priola and M. Rockner, Strong uniqueness for stochastic evolution equations with unbounded measurable drift term, J. Theoret. Probab. 28 (2015), 1571—1600.
[6] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, UK, 2014.
[7] A.M. Davie, Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not. 2007 (2007), 1—26.
[8] E. Fedrizzi and F. Flandoli, Pathwise uniqueness and continuous dependence for SDEs with non-regular drift, Stochastics 83 (2011), 241—257.
[9] F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math. 180 (2010), 1–53.
[10] I. Gyongy and T. Martınez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J. 51 (2001), 763—783.
[11] M. Kovacs, F. Lindner and R.L. Schilling, Weak convergence of finite element approximations of linear stochastic evolution equations with additive Levy noise, SIAM/ASA J. Uncertain. Quantif. 3 (2015), 1159—1199.
[12] N.V. Krylov and M. Roeckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), 154–196.
[13] O. Menoukeu-Pamen, T. Meyer-Brandis, T. Nilssen, F. Proske and T. Zhang, A variational approach to the construction and Malliavin differentiability of strong solutions of SDEs, Math. Ann. 357 (2013), 761–799.
[14] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Levy Noise: An Evolution Equation Approach, Cambridge University Press, UK, 2007.
[15] E. Priola, Pathwise uniqueness for singular SDEs driven by stable processes, Osaka J. Math. 49 (2012), 421–447.
[16] X. Sun, L. Xie and Y. Xie, Pathwise uniqueness for a class of SPDEs driven by cylindrical α-stable processes, Potential Anal. 53 (2020), 659—675.
[17] H. Tanaka, M. Tsuchiya and S. Watanabe, Perturbation of drift-type for Levy processes, Kyoto J. Math. 14 (1974), 73–92.
[18] A.V. Veretennikov, On the strong solutions of stochastic differential equations, Theory Probab. Appl. 24 (1980), 354–366.
[19] D. Yang, Pathwise uniqueness for stochastic evolution equations with Holder drift and stable Levy noise, Nonlinear Differ. Equ. Appl. 25 (2018), 1–7.