[1] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math. 16 (1966), no. 1, 1–3.
[2] D.P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans. Automatic Control 21 (1976), no. 2, 174–184.
[3] P.H. Calamai and J.J. More, Projected gradient methods for linearly constrained problems, Math. Program. 39 (1987), 93–116.
[4] R.E. Fan, P.H. Chen, C.J. Lin, and T. Joachims, Working set selection using second order information for training support vector machines, J. Machine Learn. Res. 6 (2005), no. 12, 1889–1918.
[5] E.M. Gafni and D.P. Bertsekas, Two-metric projection methods for constrained optimization, SIAM J. Control Optim. 22 (1984), 936–964,
[6] J. Gondzio, Interior point methods 25 years later, Eur. J. Oper. Res. 218 (2012), 587–601.
[7] M.W. Huang, C.W. Chen, W.C. Lin, S.W. Ke, and C.F. Tsai, SVM and SVM ensembles in breast cancer prediction, PloS one 12 (2017), no. 1, e0161501.
[8] S.G. Jacob and R.G. Ramani, Efficient classifier for classification of prognostic breast cancer data through data mining techniques, Proc. World Cong. Engin. Comput. Sci., 2012, pp. 24–26.
[9] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient methods under the polyak- lojasiewicz condition, Machine Learn. Knowledge Discov. Databases: Eur. Conf. ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proc. Part I 16, Springer International Publishing, 2016, pp. 795–811.
[10] S.S. Keerthi, D. DeCoste, and T. Joachims, A modified finite Newton method for fast solution of large scale linear SVMs, J. Mach. Learn. Res. 6 (2005), no. 3, 341–361.
[11] E.S. Levitin and B.T. Polyak, Constrained minimization problems, USSR Comput Math. Phys. 6 (1966), 1–50.
[12] N. Liu, E.S. Qi, M. Xu, B. Gao, and G.Q. Liu, A novel intelligent classification model for breast cancer diagnosis, Inf. Process. Manag. 56 (2019), no. 3, 609–623.
[13] G.P. Mccormick, R.A. Tapia, The gradient projection method under mild differentiability conditions, SIAM J. Control 10 (1972), no. 1, 93–98.
[14] J.C. Platt, Sequential minimal optimization: A fast algorithm for training support vector machines, Published by Microsoft, MSR-TR-98-14, 1998.
[15] B.T. Polya, Introduction to Optimization, Optimization Software, New York, 1987.
[16] A. Ruszczynski, Nonlinear Optimization, Princeton University Press, New Jersey, 2006.
[17] F. Steinke, B. Scholkopf, and V. Blanz, Support vector machines for 3D shape processing, Comput. Graphics Forum 24 (1982-2005), no. 3, 285-294.
[18] M. Su and H.-K. Xu, Remarks on the gradient-projection algorithm, J. Nonlinear Anal. Optim. 1 (2010), 35–43.
[19] P. Taylor, J. Fox, and A. Todd-Pokropek, Evaluation of a decision Aid for the classification of micro calcifications, Digital Mammog.: Nijmegen 1998 (1998), 237–244.
[20] G.D. Tourassi, M.K. Markey, J.Y. Lo, and C.E. Floyd Jr, A neural network approach to breast cancer diagnosis as a constraint satisfaction problem, Med. Phys. 28 (2001), 804–811.
[21] V. Vapnik, I. Guyon, and T. Hastie, Support vector machines, Mach. Learn. 20 (1995), no. 3, 273–297.
[22] B.P. Vrigazova, Detection of malignant and benign breast cancer using the Anova-Bootstrap-SVM, J. Data Inf. Sci. 5 (2020), no. 2, 62–75.