[1] D. E. Boekke and J.C.A. Van der lubbe, The R-norm information measure. In. Control 45 (1980), 136–155.
[2] M. Ebrahimi and B. Mosapour, The concept of entropy on D-posets, Cankaya Univ. J. Sci. Eng. 10 (2013), 137–151.
[3] A. Ebrahimzadeh, Z. Eslami Giski, and D. Markechova, Logical entropy of dynamical systems-A general model, Mathematics 5 (2017), no. 1, 4.
[4] A. Ebrahimzadeh and J. Jamalzadeh, Conditional logical entropy of fuzzy σ-algebras, J. Intell. Fuzzy Syst. 33 (2017), 1019–1027.
[5] A. Ebrahimzadeh, Logical entropy of quantum systems, Open Phys. 14 (2016), 1–5.
[6] A. Ebrahimzadeh, Quantum conditional logical entropy of dynamical systems, Ital. J. Pure Apple. Math. 36 (2016), 879–886.
[7] D. Ellerman, An introduction to logical entropy and its relation to Shannon entropy, Int. J. Semant. Comput. 7 (2013), 121–145.
[8] Z. Eslami Giski and M. Ebrahimi, Entropy of countable partitions on effect algebras with the Riesz decomposition property and weak sequential effect algebras, Cankaya Univ. J. Sci. Eng. 12 (2015), 20–39.
[9] Z. Eslami Giski and A. Ebrahimzadeh, An introduction of logical entropy on sequential effect algebra, Indag. Math. 28 (2017), 928–937.
[10] D.S. Hooda and R.K. Bajij, On generalized R-norm information measures of fuzzy information, J. Appl. Math. Stat. Inf. 4 (2008), 199–212.
[11] D. S. Hooda and A. Ram, Characterization of a generalized measure of R-norm entropy, Caribb. J. Math. Comput. Sci. 8 (2002), 18–31.
[12] D.S. Hooda and D.K. Sharma, Generalized R-norm information measures, J. Appl. Math. Stat. Inf. 4 (2008), 153–168.
[13] M. Khare, Fuzzy σ-algebras and conditional entropy, Fuzzy Sets Syst. 102 (1999), 287–292.
[14] S. Kumar and A. Choudhary, Generalized parametric R-norm information measure. Trends Appl. Sci. Res. 7 (2012), 350–369.
[15] S. Kumar, A. Choudhary, and R. Kumar, Some more results on a generalized parametric R-norm information measure of type α, J. Appl. Sci. Eng. 7 (2014), 447–453.
[16] D. Markechova, B. Mosapour, and A. Ebrahimzadeh, Logical divergence, logical entropy, and logical mutual information in product MV-algebras, Entropy 20 (2018), 129.
[17] D. Markechova, B. Mosapour, and A. Ebrahimzadeh, R-norm entropy and R-norm divergence in fuzzy probability spaces, Entropy 20 (2018), 272.
[18] D. Markechova, Kullback-Leibler divergence and mutual information of experiment in the fuzzy case, Axioms 6 (2017), no. 1, 5.
[19] D. Markechova and B. Riecan, Kullback-Leibler divergence and mutual information of partitions in product MValgebras, Entropy 19 (2017), 267.
[20] D. Markechova and B. Riecan, Logical entropy of fuzzy dynamical systems, Entropy 18 (2016), 157.
[21] D. Markechova and B. Riecan, Renyi entropy and Renyi divergence in product MV-algebras, Entropy 20 (2018), 587.
[22] U. Mohammadi, The concept of logical entropy on D-posets, J. Algebra Struct. Appl. 1 (2016), 53–61.
[23] B. Riecan, Kolmogorov-sinaj entropy on MV-algebras, Int. J. Theor. Phys. 44 (2005), 1041–1052.
[24] B. Riecan and D. Mundici, Probability on MV-algebras, Handbook of measure theory, Elsevier. Amsterdam, The Netherlands, 2002, pp. 869–910.
[25] C.E. Shannon, Mathematical Theory of communication, Bell Syst. Tech. J. 27 (1948), 379–423.